История лазера

В 1900 году один из талантливейших умов нашей планеты – немецкий ученый Макс Планк открывает элементарную порцию энергии – квант и теоретически описывает связь энергии кванта с частотой электромагнитного излучения, вызвавшей его появление. Спустя 8 лет в 1918 году за свое открытие он получает Нобелевскую премию. Кстати примерно в это же время другой выдающийся ученый Альберт Эйнштейн открывает наименьшую элементарную частицу света – фотон и доказывает теорию дискретности света.

В 1917 году Эйнштейн формулирует теорию «Вынужденного излучения», которая описывает возможность создания условий, при которых электроны одновременно излучают свет одной длины волны. То есть, по сути, он описал теоретическую возможность создания некоего управляемого электромагнитного излучателя, названного впоследствии лазером.

История лазера

Только через 34 года идея Эйнштейна из теории начала превращаться в реальность. В 1951 году профессор Колумбийского университета Чарльз Таунс решается использовать теорию «вынужденного излучения» для создания реального действующего прибора. В 1954 году он со своими единомышленниками Гербертом Цайгером и Джеймсом гордоном на практике реализует свой замысел, представив на суд общественности – первый в мире реально работающий лазер. Правда, тогда он назывался «мазер». Прибор генерировал очень тонкий луч света на частоте 100 Гц мощностью 10 нВт. Конечно же, по сегодняшним меркам это немного, но тогда это был настоящий прорыв в оптоэлектронике.

Чарльз Таунс (слева) — изобретатель лазера, получивший Нобелевскую премию вместе советскими учеными А. Прохоровым и Н. Басовым.

Чарльз Таунс (слева) — изобретатель лазера, получивший Нобелевскую премию вместе советскими учеными А. Прохоровым и Н. Басовым.

Спустя год в 1955 году советские ученые Александр Прохоров и Николай Басов из Института физики Академии наук CCCP совершенствуют конструкцию мазера, изменяя метод накачки электронов. В 1964 году они вместе с Таунсом получают за свои открытия Нобелевскую премию. В 1956 году американский ученый Николас Блумберген из Гарвардского университета разрабатывает твердотельный мазер. До этого существовали только газовые.

Профессор Ч. Таунс в гостях у академика Н. Г. Басова.

Профессор Ч. Таунс в гостях у академика Н. Г. Басова.

Что касается самого названия, то впервые термин «лазер» упоминает в своих научных работах выпускник Колумбийского университета и коллега по научным изысканиям Чарльза Таунса – Гордон Гуд. Это произошло в 1957 году. Почему такое изменение? Дело в том, что первые мазеры работали не в оптическом диапазоне и были невидимы для человеческого глаза. Таунс же разработал конструкцию оптического светогенерирующего прибора, а Гуд ввел понятие «лазер» и нотариально заверил право первого, кто описал принцип работы этого прибора.

Первый советский рубиновый лазер, созданный в ФИАНе.

Первый советский рубиновый лазер, созданный в ФИАНе.

В 1960 году американский физик Теодор Мейнман создает первый в мире лазер, который работает на кристалле драгоценного камня – рубине. Позже этот тип лазеров стали называть «рубиновыми» и они достаточно долгое время были самыми широко распространенными. Чуть позже в этом же году в ноябре месяце компания IBM представила свой твердотельный лазер, использующий технологию 4-уровневой накачки.

Создатель лазера академик Александр Михайлович Прохоров.

Создатель лазера академик Александр Михайлович Прохоров.

Первое коммерческое использование лазера произошло в 1961 году. Тогда на рынке работало уже несколько компаний, разрабатывающих и производящих подобные оптические приборы. В 1962 году был впервые использован рубиновый лазер. С его помощью сваривались швы на корпусе наручных часов.

Американский физик, обосновавший возможность создания лазера, Нобелевский лауреат Артур Леонард Шавлов.

Американский физик, обосновавший возможность создания лазера, Нобелевский лауреат Артур Леонард Шавлов.

Первый полупроводниковый лазер был создан в 1962 году в компании General Electric. Его разработчиком стал инженер Ник Холоньяк.

Отцом светодиодной технологии в нынешнем ее понимании стал Ник Холоньяк.

Отцом светодиодной технологии в нынешнем ее понимании стал Ник Холоньяк.

Затем лазерная техника получила бурное развитие. Появились: газовые, газодинамические, химические лазеры, лазеры на свободных электронах, волоконные и другие.

Гелий-неоновый лазер.

Гелий-неоновый лазер.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

История лазера

Лазеры широко применяются в научных измерениях и экспериментах. Они позволяют создать высокую точность там, где это потребуется.

История лазера

Современные источники лазерного излучения дают в руки экспериментаторов монохроматический свет с практически любой желаемой длиной волны. В зависимости от поставленной задачи это может быть как непрерывное излучение с чрезвычайно узким спектром, так и ультракороткие импульсы длительностью вплоть до сотен аттосекунд (1 ас = 10−18 секунды). Высокая энергия, запасенная в этих импульсах, может быть сфокусирована на исследуемый образец в пятно, сравнимое по размерам с длиной волны, что дает возможность исследовать различные нелинейные оптические эффекты. С помощью перестройки по частоте осуществляются спектроскопические исследования этих эффектов, а управление поляризацией лазерного излучения позволяет проводить когерентный контроль исследуемых процессов.

История лазера

Лазеры применяются в информационной сфере. Лазерные принтеры и лазерные проигрыватели компакт дисков прочно вошли в наш обиход.

Полупроводниковый лазер, применяемый в узле генерации изображения принтера Hewlett-Packard.

Полупроводниковый лазер, применяемый в узле генерации изображения принтера Hewlett-Packard.

Лазеры используются в связи, в том числе и космической.

лазеры в космосе

Большой размах получило лазерное сопровождение музыкальных представлений (так называемое «лазерное шоу»).

лазерное шоу

Лазер используется в строительстве. Лазерные уровни, угломеры и линейки позволяют делать замеры с большой точностью.

лазерный угломер

Лазерная резка металла — технология резки и раскроя материалов, использующая лазер высокой мощности и обычно применяемая на промышленных производственных линиях. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния. Лазерная резка отличается отсутствием механического воздействия на обрабатываемый материал, возникают минимальные деформации, как временные в процессе резки, так и остаточные после полного остывания. Вследствие этого лазерную резку, даже легкодеформируемых и нежестких заготовок и деталей, можно осуществлять с высокой степенью точности.

Лазерная резка металла

Лазеры широко применяются в медицине. С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза — это точечная контактная сварка; лазерный скальпель — автогенная резка; сваривание костей — стыковая сварка плавлением; соединение мышечной ткани — тоже контактная сварка.

лазеры в медицине

С середины 50-х годов XX века в СССР осуществлялись широкомасштабные работы по разработке и испытанию лазерного оружия высокой мощности, как средства непосредственного поражения целей в интересах стратегической противокосмической и противоракетной обороны. Среди прочих были реализованы программы «Терра» и «Омега». Испытания лазеров осуществлялись на полигоне Сары-Шаган (ПВО, ПРО, ПКО, СККП, СПРН) в Казахстане. После распада Советского Союза работы на полигоне Сары-Шаган были остановлены.

В середине марта 2009 года американская корпорация Northrop Grumman объявила о создании твердотельного электрического лазера мощностью около 100 кВт. Разработка данного устройства была произведена в рамках программы по созданию эффективного мобильного лазерного комплекса, предназначенного для борьбы с наземными и воздушными целями.

Также используются лазерные дальномеры и целеуказатели.

лазерное оружие

Также лазеры применяются в быту. Лазерные указки, считыватели штрих-кодов и тому подобная техника успела завоевать популярность.

лазерная указка

Источники: http://comnew.ru/1294-istoriya-lazera.html, https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BB%D0%B0%D0%B7%D0%B5%D1%80%D0%BE%D0%B2, https://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B7%D0%B5%D1%80

(Visited 785 times, 1 visits today)